Further discussion

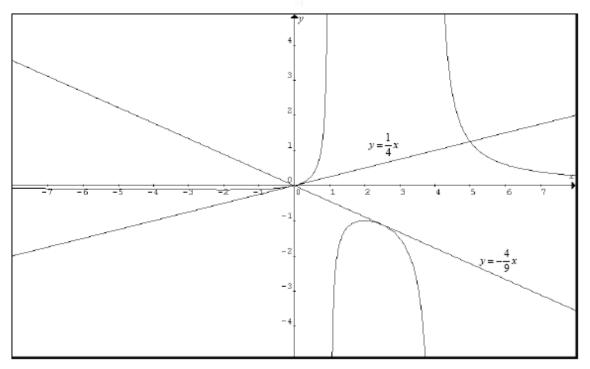
This is a nice question from a discussion on SgForums in which the graphical approach is superior to the algebraic approach of considering the discriminant.

Question:

The curve C is defined by the equation $y = x/(x^2-5x+4)$.

Find a positive value for k such that the equation $x/(x^2-5x+4) = kx$ has exactly 2 real roots.

Approach:


Sketch the graph of $y = x/(x^2-5x+4)$.

One should realise that y = kx (where k > 0) will intersect $y = x/(x^2-5x+4)$, provided that y = kx is tangent to the curve at the origin.

Find the value of dy/dx at the origin, which will be the value of k.

Using the algebraic method would only give k = -4/9.

This diagram shows that
$$y=\frac{1}{4}x$$
 and $y=-\frac{4}{9}x$ each intersects the curve twice.

